Summary: Techniques of Integration

We've had 5 basic integrals that we have developed techniques to solve:

1. Integration by parts: Three basic problem types: (1) $x^{n} f(x)$: Use a table, if possible. (2) Exponential times a sine or cosine: Integrate by parts twice to get the same integral type on both sides of the equation. (3) Some functions, like $\sin ^{-1}(x)$ and $\ln (x)$, have special derivatives. When integrating these types of functions, use integration by parts once, with $d v=d x$.
2. Trig integrals: Two techniques- (1) Try to keep something with $d x$ and make a $u, d u$ substitution. (2) Use half-angle identities to write powers of sines and cosines as $\sin (m x)$ and $\cos (m x)$, which can be integrated directly.
(a) Odd power of sine or cosine: $\operatorname{Try} u, d u$.
(b) Both are even powers: Use half-angle identities.
(c) Integrals with other trig functions: First, try to keep out $\sec (x) \tan (x)$ or $\sec ^{2}(x)$ with the $d x$ to get a substitution. If that doesn't work, try writing in terms of sines and cosines to get something that does work.
3. Trig substitutions: The idea here is to substitute trig functions in for x to get an integral for which we can use the techniques developed in 7.2. Templates:

$$
\begin{array}{llllll}
\sqrt{a^{2}-x^{2}} & x=a \sin (\theta) & \sqrt{a^{2}-c^{2} x^{2}} & c x=a \sin (\theta) & \sqrt{a^{2}-(x-b)^{2}} & x-b=a \sin (\theta) \\
\sqrt{x^{2}+a^{2}} & x=a \tan (\theta) & \sqrt{c^{2} x^{2}+a^{2}} & c x=a \tan (\theta) & \sqrt{(x-b)^{2}+a^{2}} & x-b=a \tan (\theta) \\
\sqrt{x^{2}-a^{2}} & x=a \sec (\theta) & \sqrt{c^{2} x^{2}-a^{2}} & c x=a \sec (\theta) & \sqrt{(x-b)^{2}-a^{2}} & x-b=a \sec (\theta)
\end{array}
$$

Note: To get an expression into the form $(x-b)^{2}-a^{2},(x-b)^{2}+a^{2}$ or $a^{2}-(x-b)^{2}$, we usually have to complete the square.
What would we substitute for $\sqrt{4(x+1)^{2}-3} ?^{1}$
4. Partial Fractions: In this case, we have a polynomial, $P(x)$ divided by a polynomial $Q(x)$, and the degree of P is less than the degree of Q (If this is not the case, do long division). Our goal is to write the fraction, with the factors of Q, as a sum of simpler fractions, each one having a type of factor from Q. We can summarize this technique with the following table:

$$
Q(x) \text { has a factor like: The sum has a term like: }
$$

$$
\begin{array}{ll}
(a x+b) & \frac{A}{a x+b} \\
(a x+b)^{k} & \frac{A_{1}}{a x+b)}+\ldots+\frac{A_{k}}{(a x+b)^{k}} \\
a x^{2}+b x+c & \frac{B x+C}{a x^{2}+b x+c} \\
\left(a x^{2}+b x+c\right)^{k} & \frac{B_{1} x+C_{1}}{a x^{2}+b x+c}+\ldots+\frac{B_{k} x+C_{k}}{\left(a x^{2}+b x+c\right)^{k}}
\end{array}
$$

Remember to solve for the constants by multiplying both sides of the equation by the denominator, then set x to convenient values.

[^0]5. Improper Integrals. The key idea here is that an improper integral is a limit. There were two types of integrals- One type had ∞ appearing as an integral bound, the other type occurred if the integrand had an infinite discontinuity:
\[

$$
\begin{aligned}
\int_{a}^{\infty} f(x) d x & =\lim _{t \rightarrow \infty} \int_{a}^{t} f(x) d x \\
\int_{-\infty}^{a} f(x) d x & =\lim _{t \rightarrow-\infty} \int_{t}^{a} f(x) d x
\end{aligned}
$$
\]

If f has a vertical asymptote at $x=a$:

$$
\int_{a}^{b} f(x) d x=\lim _{t \rightarrow a^{+}} \int_{t}^{b} f(x) d x
$$

If f has a vertical asymptote at $x=b$:

$$
\int_{a}^{b} f(x) d x=\lim _{t \rightarrow b^{-}} \int_{a}^{t} f(x) d x
$$

Some techniques from the past to recall:

- L'Hospital's rule. (For limits like $t \mathrm{e}^{t}, t \ln (t)$, etc.)
- Logarithm rules: $\ln (a)+\ln (b)=\ln (a b), \ln (a)-\ln (b)=\ln \left(\frac{a}{b}\right)$.
- Computing horizontal asymptotes.

6. One last technique that might be useful: Given $\sqrt[n]{g(x)}$, you might try $u=\sqrt[n]{g(x)}$, so that $u^{n}=g(x)$, and $n u^{n-1} d u=g^{\prime}(x) d x$.
7. Formula Table to be given to you on the exam:

- $\int \cot (x) d x=\ln |\sin (x)|+C$
- $\int \tan (x) d x=\ln |\sec (x)|+C$
- $\int \sec (x) d x=\ln |\sec (x)+\tan (x)|+C$
- $\int \csc (x) d x=\ln |\csc (x)-\cot (x)|+C$
-

$$
\begin{aligned}
\sin (A) \cos (B) & =\frac{1}{2}[\sin (A-B)+\sin (A+B)] \\
\sin (A) \sin (B) & =\frac{1}{2}[\cos (A-B)-\cos (A+B)] \\
\cos (A) \cos (B) & =\frac{1}{2}[\cos (A-B)+\cos (A+B)]
\end{aligned}
$$

- $\cos (2 x)=\cos ^{2}(x)-\sin ^{2}(x)=2 \cos ^{2}(x)=1=1-2 \sin ^{2}(x)$

8. Note that you should remember important trig identities like:

$$
\begin{aligned}
\sin ^{2}(x)+\cos ^{2}(x) & =1 \\
\tan ^{2}(x)+1 & =\sec ^{2}(x) \\
\sin (2 x) & =2 \sin (x) \cos (x) \\
\cos ^{2}(x) & =\frac{1}{2}[1+\cos (2 x)] \\
\sin ^{2}(x) & =\frac{1}{2}[1-\cos (2 x)]
\end{aligned}
$$

[^0]: ${ }^{1} 4(x+1)=\sqrt{3} \tan (\theta)$

